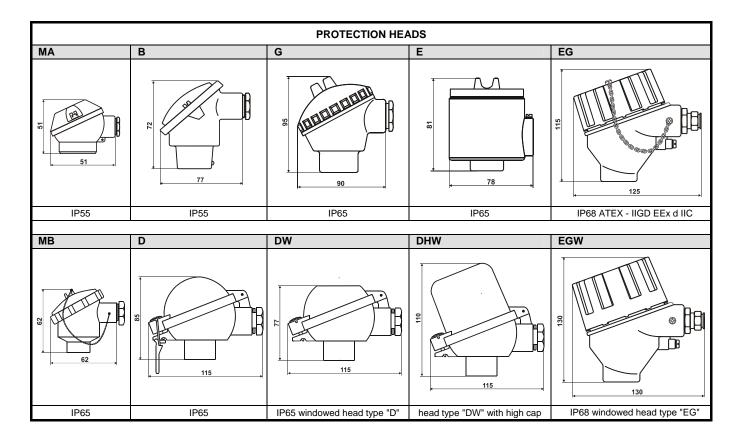
Temperature Probe Technology

RESISTANCE THERMOMETERS (RTDs)								
Code	Sensor W ₁₀₀ Norm							
RB	Pt50	1.385	IEC 751					
RD	Pt100	1.385	IEC 751					
RF	Pt500	1.385	IEC 751					
RG	Pt1000	1.385	IEC 751					
RH	Cu50	1.426	GOST 6651					
RK	Cu100	1.426	GOST 6651					
RP PTC 1k (25 °C) -								
RQ	PTC 2k (25 °C)	-						

Ptx Tolerance	Class 'A'	Class 'B'	Class '2xB'
-200 °C	± 0.55 °C	± 1.30 °C	± 2.60 °C
-100 °C	± 0.35 °C	\pm 0.80 °C	± 1.60 °C
0°C	± 0.15 °C	± 0.30 °C	± 0.60 °C
100 °C	± 0.35 °C	\pm 0.80 °C	± 1.60 °C
200 °C	± 0.55 °C	± 1.30 °C	± 2.60 °C
300 °C	± 0.75 °C	± 1.80 °C	± 3.60 °C
400 °C	± 0.95 °C	± 2.30 °C	± 4.60 °C
500 °C	± 1.15 °C	± 2.80 °C	± 5.60 °C
600 °C	± 1.35 °C	± 3.30 °C	± 6.60 °C

	THERMOCOUPLES (T/Cs)							
Code	Sensor Class Norm							
В	Pt30Rh-Pt6Rh	standard	IEC 584					
С	Wo5Re-Wo26Re	2	ASTM E988					
Е	NiCr-CuNi	1, 2	IEC 584					
J	Fe-CuNi	1, 2	IEC 584					
К	NiCr-Ni	1, 2	IEC 584					
L	NiCr-CuNi	standard	GOST 3044					
Ν	NiCrSi-NiSi	1, 2	IEC 584					
R	Pt13Rh-Pt	1, 2	IEC 584					
S	Pt10Rh-Pt	1, 2	IEC 584					
Т	Cu-CuNi	1, 2	IEC 584					

Code	Class '1' Tolerance	Class '2' Tolerance
В	-	± 0.25% (from 600 to 1700 °C)
С	-	\pm 4.5 °C (to 450 °C);1.0% (to 2320 °C)
Е	\pm 2.5 °C (to 333 °C); 0.75% (to 950 °C)	\pm 2.5 °C (to 333 °C); 0.75% (to 950 °C)
J	\pm 1.5 °C (to 375 °C); 0.4% (to 750 °C)	\pm 2.5 °C (to 333 °C); 0.75% (to 750 °C)
К	\pm 1.5 °C (to 375 °C); 0.4% (to 1000 °C)	\pm 2.5 °C (to 333 °C); 0.75% (to 1200 °C)
Ν	\pm 1.5 °C (to 375 °C); 0.4% (to 1000 °C)	\pm 2.5 °C (to 333 °C); 0.75% (to 1200 °C)
Т	\pm 0.5 °C (to 125 °C); 0.4% (to 350 °C)	\pm 1.0 °C (to 133 °C); 0.75% (to 350 °C)
R/S	± 1.0 °C (to 1100 °C); 0.3% (to 1600 °C)	± 1.5 °C (to 600 °C); 0.25% (to 1600 °C)


TEMPERATURE RANGES								
Code	Range Code Range							
T1	-50…400 °C	T12	-50100 °C					
T2	-200…600 °C	T13	0…1000 °C					
T3	0…850 °C	T14	0…1600 °C					
T4	0…800 °C	T15	01700 °C					
T5	0…1500 °C	T16	01100 °C					
T6	0…1200 °C	T17	-5050 °C					
T7	0…200 °C	T18	050 °C					
T8	0…400 °C	T19	0100 °C					
Т9	-50…200 °C	T20	0…150 °C					
T10	-10…60 °C	T21	0…1300 °C					
T11	-50…600 °C	T22	-200200 °C					

CONNECTION THREADS								
Code	Code Thread Code Thread Code Thread							
Q0 / U0	M16x1.5	Q12 / U12	G1"	Q24 / U24	NPT 1/4"			
Q1 / U1	M18x1.5	Q13 / U13	G1½"	Q25 / U25	M33x2			
Q2 / U2	M20x1.5	Q14 / U14	G2"	Q26 / U26	M8x1			
Q3 / U3	G3/8"	Q15 / U15	NPT 1"	Q27 / U27	G1¼"			
Q4 / U4	G1/2"	Q16 / U16	NPT 1½"	Q28 / U28	NPT 1¼"			
Q5 / U5	M27x2	Q17 / U17	NPT 2"	Q29 / U29	M8x1.25			
Q6 / U6	G3/4"	Q18 / U18	G1/8"	Q30 / U30	M10x1.5			
Q7 / U7	M12x1.5	Q19 / U19	NPT 1/8"	Q31	M6x1			
Q8 / U8	M14x1.5	Q20 / U20	M10x1					
Q9 / U9	NPT 3/8"	Q21 / U21	G3"	Q35 / U35	7/16-20 UNF			
Q10 / U10	NPT 1/2"	Q22 / U22	NPT 3"					
Q11 / U11	NPT 3/4"	Q23 / U23	G1/4"	F	flange			

Q - male thread (nipple); U - female thread (union nut)

	COMPATIBILITY FOR MINERAL-INSULATED THERMOCOUPLES									
	d [mm]	1.0	1.5	2.0	3.0	4.5	6.0	8.0	10.0	
	1.4541 (321)	1x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N	
	1.4571 (316Ti)	1x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N	
	1.4404 (316L)	1x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	call	
RIAL	2.4816 Inconel 600	1x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N	
MATERIAL	1.4841 (310)	1x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	call	
2	1.4762 (446)	call	call	call	call	call	1x: J, K, E, N 2x: J, K, E, N	1x: J, K, E, N 2x: J, K, E, N	call	
	1.4876 Incolloy 800	call	call	call	call	call	call	call	call	
	Nicrobell®	call	call	call	1x: J, K, E, N	1x: J, K, E, N	1x: J, K, E, N	call	call	

	SHEATH MATERIALS								
Material	Code	Туре	A.K.A.	Max. Temp.	Specifications	Applications			
Stainless steel	M1	DIN 1.4301	AISI 304 (L)	450 °C	good resistance to inter-crystal corrosion, oil products, and vapor; high conductivity; excellent resistance to low temp. from -200°C; not recommended for long-term use from 425 to 860 °C	general purpose applications in machine and apparatus construction; cryogenic and non-aggressive food and chemical processing			
Stainless steel	M2	DIN 1.4541	AISI 321	850 °C	good resistance to inter-crystal corrosion, oil products, vapor, exhaust gases, and oxidation; high conductivity	nuclear power and reactor construction; chemical apparatus & furnaces; paper, textile, crude oil, and petrochemical industry; food processing			
Stainless steel	М3	DIN 1.4571	AISI 316 TI	850 °C	same as above plus: increased resistance to acids thanks to the addition of molybdenum; resistant to pitting, salt water, and other aggressive influences; high conductivity	nuclear power and reactor construction; furnace construction; chemical and pharmaceutical industries			
Stainless steel	M4	DIN 1.4762 (1.4749)	AISI 446 (SS 2322)	1150 °C	extremely high resistance to sulfuric atmospheres; resistant to oxidation and corrosion caused by incinerator slag, copper, lead, and tin smelts	petrochemical industry; metallurgy; power technology; heat treatment kilns; vortex firing installations; waist incinerators			
Stainless steel	М5	DIN 1.4841	AISI 310	1150 °C	excellent resistance to corrosion at high temperatures; suitable for atmospheres containing carbon and sulfur; not recommended for long-term continuous use within 425860 °C temp. range	boilers and blast furnaces; cement and brick kilns; glass industry;			
Stainless steel	M6	DIN 1.4845	AISI 310 S	1100 °C	good resistance to oxidation and sulfurization; also resistant to hydrous solvents due to the high content of chromium; resistant to chlorine-induced tension crack corrosion as well as cyanide	crude oil and petrochemical industry; furnace construction; power plants			
Nickel alloy	M7	DIN 1.4876	Incolloy 800	1100 °C	provides superior thermal stability thanks to the addition of titanium and aluminum; suitable for applications requiring high non-scaling property and highest performance; excellent resistance to carburization and renitrogenization	power stations; crude oil and petrochemical industry; furnace construction			
Nickel alloy	M8	DIN 2.4816	Inconel 600	1100 °C	resistant to corrosion and tension crack corrosion; excellent resistance to oxidation; not recommended for CO_2 and sulfur gases above 550 °C, with sodium above 750 °C	power & nuclear power stations; furnace construction; fiber industry; heat treatment; paper and food processing; boilers; aircraft engines			
Stainless steel	М9	DIN 1.4404	AISI 316 L	850 °C	good resistance to inter-crystal corrosion, oil products, vapor, exhaust gases, and oxidation; resistance to mild acids and alkalies; high conductivity	food and diary industry; chemical apparatus & furnaces; paper, textile, crude oil, and petrochemical industry; grease, soap			
Nickel alloy	M10	Ni84-Cr14 (+Nb+Mg)	Nicrobell®	1250 °C	superior resistance to high temperature corrosion atmospheres; the addition of niobium has the effect of improving the thermomechanical properties and ultimate tensile strength, rupture stress and ductility as a function of temperature to 1250°C are superior to Inconel and AISI 310	boilers and blast furnaces; cement and brick kilns; glass industry; crude oil and petrochemical industry; furnace construction; power & nuclear power stations; heat treatment; paper and food processing; aircraft engines			
Pure Iron (Fe)	M11			1300 °C	excellent malleability, weldability, and corrosion resistance; holds heat about 40% longer than mild steel; suitable for salt, cyanide, or chloride baths	chemical processes including molten salts treatment			
Cast Iron	M12	DIN 0.60xx	ASTM A48	700 °C	suitable for gas ducts and some chemical solutions; fair compatibility with molten aluminum	withstands sulphur and caustic solutions			
Black steel	M13	DIN 1.0305	ASTM A106	550 °C	suitable for non-aggressive and low-oxidation gaseous media; suitable for molten babbitt, tin, lead, and magnesium	low-cost general applications			
FeCrAl alloy	M14	Cr22-Al5	Kanthal® AF	1300 °C	supperior oxidation resistance in dry air up to 1300 °C; excellent oxidation resistance to CO, CO ₂ , N ₂ , SO ₃ , and other sulfur-containing gases; very good resistance to cracked ammonia; also suitable for molten Cu, Zn, and Mg	high-temperature processes in metallurgy; power plants; chemical and petrochemical industry; furnace construction; heat treatment; cement and brick kilns, etc.			
Titanium alloy	M20	DIN 3.70xx	ASTM B348	600 °C	very high tensile strength even at high temperatures; light weight, high corrosion resistance, and low toxity; suitable for high-aggressive chemical solvents and gas mixtures	chemical and electrochemical industry; pipes for power plants, armour plating; naval ships, aircraft, spacecraft and missiles; medicine and medical apparatus			
	C1	Al ₂ O ₃ 60%	Pythagoras 610	1500 °C	an irreplaceable material for usage above 1300 °C; depending on the purity of Al ₂ O ₃ , the highest operating	glass and ceramic industries;			
Gas-tight alumina ceramic	C2	Al ₂ O ₃ 95%	Oxal 710	1600 °C	temperatures can reach 1750 °C; suitable for applications in atmospheres with CO ₂ and sulfur gases;	black and color metallurgy; power stations; high-temperature furnaces			
Ceramic	C3	Al₂O₃ 99.7%	Alsint 799	1700 °C	provides an excellent electric isolation; not suitable for non-gas media, increased vibrations, and shocks	and other high-temperature applications			
Metal- ceramic	C4	Cr+Al ₂ O ₃	Ucar®	1370 °C	excellent mechanical strength (like metal); suitable for ferrous metals baths (steels) and non-ferrous metal baths like brass, copper, zinc, and lead; not suitable for molten aluminum	black and color metallurgy; forging iron and steel; forging non-ferrous metals			
	C5	SiC	Silicon carbide	1500 °C	high temperature strength; suitable for aluminum and most of non-ferrous metal baths	aluminum industry; forging non-ferrous metals			
Silicon ceramic	C6	SiC	Hexoloy®	1650 °C	very high temperature strength; high thermal conductivity - equal to metal, five times alumina; superior oxidation resistance; suitable for most corrosive and erosive environments	almost everywhere to protect thermocouples from corrosive and erosive influences			
	C7	SiN ₄ +AlO ₄	Syalon	1250 °C	high mechanical strength and thermal shock resistance; high corrosion resistance; suitable for aluminum and most of non-ferrous metal baths	aluminum industry; forging non-ferrous metals			

	RTD PROBE TIP SHAPES								
Code	Shape Design	Description	Specifications	Applications					
x		standard closed shape	- straight and even tube - IP68 - standard operating pressure	general applications					
N		narrowed closed shape	 - d1 = 4 (d6/8); 5 (d10/12); 6 (d≥14) - IP68 - standard operating pressure 	suitable for liquid environments requiring faster response					
Р		pitted tip shape	- straight and even tube - IP20 - 0 bar operating pressure	fast-response measurements in <u>non-pressurized</u> gaseous environments					

	T/C PROBE TIP SHAPES								
Code	Shape Design	Description	Specifications	Applications					
x		standard closed shape	 thermocouple "hot junction" is <u>isolated</u> from the metal sheath IP68 standard operating pressure 	general applications with electrically <u>isolated</u> thermocouple					
G		grounded shape	 "hot junction" is <u>connected</u> to the metal sheath end cap IP68 standard operating pressure 	suitable for applications, where faster response is needed and the electrical grounding is acceptable					
ο		open-tube shape	 straight tube without end cap and hidden "hot junction" IP00 0 bar operating pressure 	fast-response measurements in <u>non-pressurized</u> gaseous environments					
E		shape with exposed "hot junction"	- straight tube without end cap - IP00 - 0 bar operating pressure	suitable for <u>non-pressurized</u> gaseous environments, where very fast-response measurements is required					